304 research outputs found

    Subject specific numerical simulation and its application to traumatology

    Get PDF
    Human body cimputer models are now frequently used for virtual crash tests in the early phase of vehicle prototype designs. However existing models only partially consider the extreme variability of the human body. Such variability raises the issue of subject specific modelling, both for geometry and for tissues mechanical properties. Progress in medical imaging and particularly biplanar X-Rays and associated 3D reconstruction, used in clinical routine, yielded drastic advances in geometric modelling. Progressive constitution of large databases allow interindividual variation analysis and modelling. Progress also concerns bone mechanical properties quantification. Recent ultrasound elastography techniques provide novel tools for in vivo characterization of soft tissues.  Beyond the field of road safety, research in subject specific modeling is also active in orthopedy and traumatology, for identification of subjects at risk and for orthopedic or surgical treatment based on subject specific simulation.  Computer based tools should emerge in a near future for a decision aid in diagnosis and treatment strategy planning, taking into account patient specificities and moving towards individualized medicine

    3D reconstruction of ribcage geometry from biplanar radiographs using a statistical parametric model approach

    Get PDF
    Rib cage 3D reconstruction is an important prerequisite for thoracic spine modelling, particularly for studies of the deformed thorax in adolescent idiopathic scoliosis. This study proposes a new method for rib cage 3D reconstruction from biplanar radiographs, using a statistical parametric model approach. Simplified parametric models were defined at the hierarchical levels of rib cage surface, rib midline and rib surface, and applied on a database of 86 trunks. The resulting parameter database served to statistical models learning which were used to quickly provide a first estimate of the reconstruction from identifications on both radiographs. This solution was then refined by manual adjustments in order to improve the matching between model and image. Accuracy was assessed by comparison with 29 rib cages from CT scans in terms of geometrical parameter differences and in terms of line-to-line error distance between the rib midlines. Intra and inter-observer reproducibility were determined regarding 20 scoliotic patients. The first estimate (mean reconstruction time of 2’30) was sufficient to extract the main rib cage global parameters with a 95% confidence interval lower than 7%, 8%, 2% and 4° for rib cage volume, antero-posterior and lateral maximal diameters and maximal rib hump, respectively. The mean error distance was 5.4 mm (max 35mm) down to 3.6 mm (max 24 mm) after the manual adjustment step (+3’30). The proposed method will improve developments of rib cage finite element modeling and evaluation of clinical outcomes.This work was funded by Paris Tech BiomecAM chair on subject specific muscular skeletal modeling, and we express our acknowledgments to the chair founders: Cotrel foundation, SociĂ©tĂ© gĂ©nĂ©rale, ProtĂ©or Company and COVEA consortium. We extend your acknowledgements to Alina Badina for medical imaging data, Alexandre JournĂ© for his advices, and Thomas Joubert for his technical support

    Finite element modelling of an energy–storing prosthetic foot during the stance phase of transtibial amputee gait

    Get PDF
    Energy-storing prosthetic feet are designed to store energy during mid-stance motion and to recover it during latestance motion. Gait analysis is the most commonly used method to characterize prosthetic foot behaviour during walking. In using this method, however, the foot is generally modelled as a rigid body. Therefore, it does not take into account the ability of the foot to deform. However, the way this deformation occurs is a key parameter of various foot properties under gait conditions. The purpose of this study is to combine finite element modelling and gait analysis in order to calculate the strain, stress and energy stored in the foot along the stance phase for self-selected and fast walking speeds. A finite element model, validated using mechanical testing, is used with boundary conditions collected experimentally from the gait analysis of a single transtibial amputee. The stress, strain and energy stored in the foot are assessed throughout the stance phase for two walking speed conditions: a self-selected walking speed (SSWS), and a fast walking speed (FWS). The first maximum in the strain energy occurs during heel loading and reaches 3 J for SSWS and 7 J for FWS at the end of the first double support phase. The second maximum appears at the end of the single support phase, reaching 15 J for SSWS and 18 J for FWS. Finite element modelling combined with gait analysis allows the calculation of parameters that are not obtainable using gait analysis alone. This modelling can be used in the process of prosthetic feet design to assess the behaviour of a prosthetic foot under specific gait conditions

    A reference method for the evaluation of femoral head joint center location technique based on external markers

    Get PDF
    Accurate localization of joint centers is essential in movement analysis. However, joint centers cannot be directly palpated and alternative methods must be used. To assess the relative merits of these methods, a medical image based reference should be used. The EOS1 system, a new low dose bi-planar X-rays imaging technique may be considered. The aim of this study was to evaluate the accuracy of hip joint center (HJC) localization using the EOS1 system. Seventeen healthy young adults participated in the study. Femoral heads and pelvic external markers were localized using the EOS1 system and the HJCs were expressed in the movement analysis coordinate system. Results showed that external marker localization was reliable within 0.15 mm for trained assessors. Mean accuracy for HJC localization was 2.9 mm (SD: 1.3, max: 6.2). The EOS based method therefore appeared reliable and may be used for femoral head localization or as a reference to assess the accuracy of other methods for HJC localization.The authors are grateful to VICON (OMG-UK) for the loan of a motion capture system necessary for the overall study

    Variability of Child Rib Bone Hounsfield Units using in vivo Computed Tomography

    Get PDF
    The variability assessment of the rib bone mechanical properties during the growth process is still missing. These properties could not be obtained in vivo on children. Relationships have been obtained between Hounsfield Units from computed tomography (CT) and mechanical properties (e.g. for the cortical bone on adults). As a first step for investigation of the mechanical properties of child ribs, the aim of this study was to determine the Hounsfield Units variation of child ribs from CT‐scan data, by rib level, along the rib and within the rib sections. Twenty‐seven right ribs of levels 4, 6 and 9 were processed from 11 thoracic CT scans of children without bone lesions aged between 1 and 10 years. A first set of 10 equidistributed cross‐sections normal to the rib midline were extracted. Sixteen equally distributed elements defined 4 areas into the cortical band: internal, external, caudal and cranial. Within the rib sections, Hounsfield Units were found significantly higher in internal and external areas than in caudal and cranial. In a further step using calibrated CT scans, it would be possible to derive the mechanical properties of in vivo child ribs using bone density correlation with Hounsfield Units

    Trunk Inclination Estimate During the Sprint Start Using an Inertial Measurement Unit: A Validation Study

    Get PDF
    The proper execution of the sprint start is crucial in determining the performance during a sprint race. In this respect, when moving from the crouch to the upright position, trunk kinematics is a key element. The purpose of this study was to validate the use of a trunk-mounted inertial measurement unit (IMU) in estimating the trunk inclination and angular velocity in the sagittal plane during the sprint start. In-laboratory sprint starts were performed by five sprinters. The local acceleration and angular velocity components provided by the IMU were processed using an adaptive Kalman filter. The accuracy of the IMU inclination estimate and its consistency with trunk inclination were assessed using reference stereophotogrammetric measurements. A Bland-Altman analysis, carried out using parameters (minimum, maximum, and mean values) extracted from the time histories of the estimated variables, and curve similarity analysis (correlation coefficient > 0.99, root mean square difference < 7 deg) indicated the agreement between reference and IMU estimates, opening a promising scenario for an accurate in-field use of IMUs for sprint start performance assessment

    Quantitative geometric analysis of rib, costal cartilage and sternum from childhood to teenagehood

    Get PDF
    Better understanding of the effects of growth on children’s bones and cartilage is necessary for clinical and biomechanical purposes. The aim of this study is to define the 3D geometry of children’s rib cages: including sternum, ribs and costal cartilage. Three-dimensional reconstructions of 960 ribs, 518 costal cartilages and 113 sternebrae were performed on thoracic CT-scans of 48 children, aged four months to 15 years. The geometry of the sternum was detailed and nine parameters were used to describe the ribs and rib cages. A "costal index" was defined as the ratio between cartilage length and whole rib length to evaluate the cartilage ratio for each rib level. For all children, the costal index decreased from rib level one to three and increased from level three to seven. For all levels, the cartilage accounted for 45 to 60% of the rib length, and was longer for the first years of life. The mean costal index decreased by 21% for subjects over three years old compared to those under three (p<10-4). The volume of the sternebrae was found to be highly age dependent. Such data could be useful to define the standard geometry of the paediatric thorax and help to detect clinical abnormalities.Grant from the ANR (SECUR_ENFANT 06_0385) and supported by the GDR 2610 “BiomĂ©canique des chocs” (CNRS/INRETS/GIE PSA Renault

    Estimation of hip joint center from the external body shape: a preliminary study

    Get PDF
    Human external shape model is becoming easily available using scanning technology, stereophotogram- metry, or Microsoft Kinect systems. However locating the internal skeleton from the external shape remains a challenging issue. Using low dose biplanar radiographs of the whole body, subject-specific 3D reconstructions of the bones and the surface envelope have been developed, providing data of both external body shape and internal skeleton (Dubousset et al. 2010). The basic idea of this research project was to explore the relationships between characteristics of internal skeleton and those of external body shape. Hip joint center (HJC) prediction was considered in this preliminary study. Subject-specific HJC prediction is cur- rently performed either using functional methods based on the relative motion of the femur and pelvis, or predictive methods relying on empirical regression equations using palpable femoral and pelvic landmarks as predictors. Yet functional methods may be ineffective when hip motion is limited. Different regressions between HJC and predictive landmarks were established based on direct measurements on pelvic and femoral bone specimen surface, using cadav- ers, medical imaging or 3D CT-scans (Peng et al. 2015). However, in most applications when medical imaging is not available, manual palpation over the skin of the bony predictors might increase the prediction error on HJC compared to cases where bone information is available directly (Sholukha et al. 2011, Sangeux et al. 2014). In this paper, new predictors from external body shape were explored for HJC prediction

    Vertebral rotation estimation from frontal X-rays using a quasi-automated pedicle detection method

    Get PDF
    Purpose Measurement of vertebral axial rotation (VAR) is relevant for the assessment of scoliosis. Stokes method allows estimating VAR in frontal X-rays from the relative position of the pedicles and the vertebral body. This method requires identifying these landmarks for each vertebral level, which is time-consuming. In this work, a quasi-automated method for pedicle detection and VAR estimation was proposed. Method A total of 149 healthy and adolescent idiopathic scoliotic (AIS) subjects were included in this retrospective study. Their frontal X-rays were collected from multiple sites and manually annotated to identify the spinal midline and pedicle positions. Then, an automated pedicle detector was developed based on image analysis, machine learning and fast manual identification of a few landmarks. VARs were calculated using the Stokes method in a validation dataset of 11 healthy (age 6–33 years) and 46 AIS subjects (age 6–16 years, Cobb 10°–46°), both from detected pedicles and those manually annotated to compare them. Sensitivity of pedicle location to the manual inputs was quantified on 20 scoliotic subjects, using 10 perturbed versions of the manual inputs. Results Pedicles centers were localized with a precision of 84% and mean difference of 1.2 ± 1.2 mm, when comparing with manual identification. Comparison of VAR values between automated and manual pedicle localization yielded a signed difference of − 0.2 ± 3.4°. The uncertainty on pedicle location was smaller than 2 mm along each image axis. Conclusion The proposed method allowed calculating VAR values in frontal radiographs with minimal user intervention and robust quasi-automated pedicle localization.The authors are grateful to the ParisTech BiomecAM chair program on subject-specific musculoskeletal modeling for funding (with the support of ParisTech and Yves Cotrel Foundations, SociĂ©tĂ© GĂ©nĂ©rale, Proteor and Covea)

    Rib Cage Measurement Reproducibility Using Biplanar Stereoradiographic 3D Reconstructions in Adolescent Idiopathic Scoliosis

    Get PDF
    Study design: A reproducibility study of preoperative rib cage 3D measurements was conducted for patients with Adolescent Idiopathic Scoliosis (AIS). Objective: to assess the reliability of rib cage 3D reconstructions using biplanar stereoradiography in patients with AIS before surgery. Summary: no prior reliability study has been performed for preoperative 3D reconstructions of the rib cage by using stereoradiography in patients with preoperative AIS. Materials: this series includes 21 patients with Lenke 1 or 2 scoliosis (74°+ - 20). All patients underwent low-dose standing biplanar radiographs. Two operators performed reconstructions twice each. Intraoperator repeatability, interoperator reproducibility and Intraclass coefficients (ICC) were calculated and compared between groups. Results: The average rib cage volume was 4.7l L (SD ± 0.75 L). SDr was 0.19 L with a coefficient of variation of 4.1% ; ICC was 0.968. The thoracic index was 0.6 (SD ± 0.1). SDr was 0.03 with a coefficient of variation of 4.7 % and a ICC of 0.820. As for the Spinal Penetration Index (6.4% ; SD ± 2.4), SDr was 0.9 % with a coefficient of variation of 14.3 % and a ICC of 0.901. The 3D rib hump SDr (average 27° ± 8°) was 1.4°. The coefficient of variation and ICC were respectively 5.1% and 0.991. Conclusion: 3D reconstruction of the rib cage using biplanar stereoradiography is a reliable method to estimate preoperative thoracic parameters in patients with AIS
    • 

    corecore